Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 246, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951991

RESUMO

The design of supramolecular networks based on organic molecules deposited on surfaces, is highly attractive for various applications. One of the remaining challenges is the expansion of monolayers to well-ordered multilayers in order to enhance the functionality and complexity of self-assemblies. In this study, we present an assessment of molecular conformation from 2D to 3D supramolecular networks adsorbed onto a HOPG surface under ambient conditions utilizing a combination of scanning probe microscopies and atomic force microscopy- infrared (AFM-IR). We have observed that the infrared (IR) spectra of the designed molecules vary from layer to layer due to the modifications in the dihedral angle between the C=O group and the neighboring phenyl ring, especially in the case of a 3D supramolecular network consisting of multiple layers of molecules.

2.
New Phytol ; 238(5): 2033-2046, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36869436

RESUMO

Cuticles are multifunctional hydrophobic biocomposites that protect the aerial organs of plants. During plant development, plant cuticles must accommodate different mechanical constraints combining extensibility and stiffness, and the corresponding relationships with their architecture are unknown. Recent data showed a fine-tuning of cuticle architecture during fruit development, with several chemical clusters which raise the question of how they impact the mechanical properties of cuticles. We investigated the in-depth nanomechanical properties of tomato (Solanum lycopersicum) fruit cuticle from early development to ripening, in relation to chemical and structural heterogeneities by developing a correlative multimodal imaging approach. Unprecedented sharps heterogeneities were evidenced including an in-depth mechanical gradient and a 'soft' central furrow that were maintained throughout the plant development despite the overall increase in elastic modulus. In addition, we demonstrated that these local mechanical areas are correlated to chemical and structural gradients. This study shed light on fine-tuning of mechanical properties of cuticles through the modulation of their architecture, providing new insight for our understanding of structure-function relationships of plant cuticles and for the design of bioinspired material.


Assuntos
Frutas , Imagem Multimodal
3.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821663

RESUMO

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

4.
Analyst ; 147(23): 5564-5578, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36345881

RESUMO

Researchers are increasingly thinking smaller to solve some of the biggest challenges in nanomedicine: the control of drug encapsulation. Although recent years have witnessed a significant increase in the development and characterization of polymeric drug nanocarriers, several key features are still to be addressed: Where is the drug located within each nanoparticle (NP)? How much drug does each NP contain? Is the drug loading homogeneous on an individual NP basis? To answer these questions, individual NP characterization was achieved here by using atomic force microscopy-infrared spectroscopy (AFM-IR). A label-free quantification methodology was proposed to estimate with a nanoscale resolution the drug loadings of individual poly(lactic acid) (PLA) NPs loaded with an anticancer drug. First, a drug loading calibration curve was established using conventional IR microspectroscopy employing PLA/drug homogeneous films of well-known compositions. Then, single NPs were investigated by AFM-IR acquiring both IR mappings of PLA and drug as well as local IR spectra. Besides, drug location within single NPs was unravelled. The measured drug loadings were drastically different (0 to 21 wt%) from one NP to another, emphasizing the particular interest of this methodology in providing a simple quantification method for the quality control of nanomedicines.


Assuntos
Antineoplásicos , Nanopartículas , Nanopartículas/química , Poliésteres/química , Polímeros/química , Microscopia de Força Atômica , Portadores de Fármacos/química
5.
Pharmaceutics ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959274

RESUMO

Vancomycin (VCM) is a last resort antibiotic in the treatment of severe Gram-positive infections. However, its administration is limited by several drawbacks such as: strong pH-dependent charge, tendency to aggregate, low bioavailability, and poor cellular uptake. These drawbacks were circumvented by engineering pH-responsive nanoparticles (NPs) capable to incorporate high VCM payload and deliver it specifically at slightly acidic pH corresponding to infection sites. Taking advantage of peculiar physicochemical properties of VCM, here we show how to incorporate VCM efficiently in biodegradable NPs made of poly(lactic-co-glycolic acid) and polylactic acid (co)polymers. The NPs were prepared by a simple and reproducible method, establishing strong electrostatic interactions between VCM and the (co)polymers' end groups. VCM payloads reached up to 25 wt%. The drug loading mechanism was investigated by solid state nuclear magnetic resonance spectroscopy. The engineered NPs were characterized by a set of advanced physicochemical methods, which allowed examining their morphology, internal structures, and chemical composition on an individual NP basis. The compartmentalized structure of NPs was evidenced by cryogenic transmission electronic microscopy, whereas the chemical composition of the NPs' top layers and core was obtained by electron microscopies associated with energy-dispersive X-ray spectroscopy. Noteworthy, atomic force microscopy coupled to infrared spectroscopy allowed mapping the drug location and gave semiquantitative information about the loadings of individual NPs. In addition, the NPs were stable upon storage and did not release the incorporated drug at neutral pH. Interestingly, a slight acidification of the medium induced a rapid VCM release. The compartmentalized NPs could find potential applications for controlled VCM release at an infected site with local acidic pH.

6.
Appl Spectrosc ; 75(12): 1538-1547, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608808

RESUMO

The purpose of this work is to develop an integrated imaging approach to characterize without labeling at the sub-cellular level the formation of lipid body droplets (LBs) in microalgae undergoing nitrogen starvation. First conventional optical microscopy approaches, gas chromatography, and turbidimetry measurements allowed to monitor the biomass and the total lipid content in the oleaginous microalgae Parachlorella kesslerii during the starvation process. Then a local analysis of the LBs was proposed using an innovative infrared nanospectroscopy technique called atomic force microscopy-based infrared spectroscopy (AFM-IR). This label-free technique assessed the formation of LBs and allowed to look into the LB composition thanks to the acquisition of local infrared spectra. Last correlative measurements using fluorescence microscopy and AFM-IR were performed to investigate the subcellular reorganization of LB and the chloroplasts.


Assuntos
Microalgas , Gotículas Lipídicas , Microscopia de Força Atômica , Espectrofotometria Infravermelho
7.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642345

RESUMO

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

8.
Analyst ; 146(1): 132-145, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107501

RESUMO

Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher ß-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.


Assuntos
Amiloide , Peptídeos , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Microsc ; 274(1): 23-31, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30649833

RESUMO

Propagation of structural information through conformational changes in host-encoded amyloid proteins is at the root of many neurodegenerative disorders. Although important breakthroughs have been made in the field, fundamental issues like the 3D-structures of the fibrils involved in some of those disorders are still to be elucidated. To better characterise those nanometric fibrils, a broad range of techniques is currently available. Nevertheless none of them is able to perform direct chemical characterisation of single protein fibrils. In this work, we propose to investigate the structure of the C-terminal region of a bacterial protein called Hfq as a model amyloidogenic protein, using a correlative approach. The complementary techniques used are transmission electron microscopy and a newly developed infrared nanospectroscopy technique called AFM-IR. We introduce and discuss the strategy that we have implemented as well as the protocol, challenges and difficulties encountered during this study to characterise amyloid assemblies at the nearly single-molecule level. LAY DESCRIPTION: Propagation of structural information through conformational changes in amyloid proteins is at the root of many neurodegenerative disorders. Amyloids are nanostructures originating from the aggregation of multiple copies of peptide or protein monomers that eventually form fibrils. Often described as being the cause for the development of various diseases, amyloid fibrils are of major significance in the public health domain. While important breakthroughs have been made in the field, fundamental issues like the 3D-structures of the fibrils implied in some of those disorders are still to be elucidated. To better characterise these fibrils, a broad range of techniques is currently available for the detection and visualisation of amyloid nanostructures. Nevertheless none of them is able to perform direct chemical characterisation of single protein fibrils. In this work, we propose to investigate the structure of model amyloidogenic fibrils using a correlative approach. The complementary techniques used are transmission electron microscopy and a newly developed infrared nanospectroscopy technique called AFM-IR that allows chemical characterisation at the nanometric scale. The strategy, protocol, challenges and difficulties encountered in this approach are introduced and discussed herein.


Assuntos
Amiloide , Microscopia Eletrônica de Transmissão/métodos , Nanotecnologia/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Amiloide/química , Amiloide/ultraestrutura , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Silício
10.
Analyst ; 143(24): 5940-5949, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30345433

RESUMO

AFM-IR is a photothermal technique that combines AFM and infrared (IR) spectroscopy to unambiguously identify the chemical composition of a sample with tens of nanometer spatial resolution. So far, it has been successfully used in contact mode in a variety of applications. However, the contact mode is unsuitable for soft or loosely adhesive samples such as polymeric nanoparticles (NPs) of less than 200 nm of wide interest for biomedical applications. We describe here the theoretical basis of the innovative tapping AFMIR mode that can address novel challenges in imaging and chemical mapping. The new method enables gaining information not only on NP morphology and composition, but also reveals drug location and core-shell structures. Whereas up to now the locations of NP components could only be hypothesized, tapping AFM-IR allows accurately visualizing both the location of the NPs' shells and that of the incorporated drug, pipemidic acid. The preferential accumulation of the drug in the NPs' top layers was proved, despite its low concentration (<1 wt%). These studies pave the way towards the use of tapping AFM-IR as a powerful tool to control the quality of NP formulations based on individual NP detection and component quantification.


Assuntos
Microscopia de Força Atômica/métodos , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espectrofotometria Infravermelho/métodos , Ácido Pipemídico/química , Álcool de Polivinil/química , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...